вторник, 27 декабря 2016 г.

Устройство для удаления окисной корки с янтаря и его обработки

Несмотря на многовековую практику использования янтаря в технических, ювелирных, косметических и других целях, до настоящего времени не существует надежных способов очистки природного янтарного сырья от окисной корки и быстрых, эффективных способов его обработки [1]. Археологи не находят специальных инструментов для обработки янтаря, что свидетельствует об использовании для этой цели универсальных инструментов, позволяющих обрабатывать изделия из разного поделочного материала [2].

Существует ряд способов предварительной обработки янтарного сырья, обеспечивающих очистку янтаря от окисленной корки [3, 4, 5].

Известен, например, способ очистки янтаря от загрязнений обработкой органическим растворителем - тетрагидрофураном или его водным раствором [3], однако тетрагидрофуран токсичен и даже в малых концентрациях вызывает воспаление слизистых оболочек [6].

Известен способ очистки янтаря гидроабразивным материалом - раствором акрилатсодержащих кремнийорганических олигомеров в смеси органических растворителей с введенным в нее ферромагнитным порошком при постоянном нагревании до температуры, не превышающей температуру оплавления янтаря, в электромагнитном поле и под действием вибрации [4]. Способ достаточно сложен и пригоден в основном для очистки мелких фракций.

Известен способ очистки янтаря, включающий его выдерживание в течение 2 часов в смеси органических растворителей (толуола, метилового спирта, этилацетата) с последующим перемешиванием во вращающемся барабане в течение еще двух часов, в результате чего окисленная корка отделяется от поверхности янтаря и удаляется при просеивании. Метод для своей реализации требует применения токсичных и небезопасных в пожарном отношении растворителей и пригоден для интегральной обработки поверхностей мелких фракций янтаря, при этом выход очищенного (ошкуренного) янтаря составляет 50-60% [5].

Известны также устройства, разработанные преимущественно для обработки янтаря [7, 8, 9], использование которых позволяет реализовать некоторые способы размерной обработки различных материалов, в том числе и янтаря [7], способы обработки природного поделочного янтаря и художественной обработки янтарных заготовок [8, 9]. Недостатком этих устройств является их высокая энергоемкость, сложность в их реализации и/или управлении.

Известна ультразвуковая установка прошивочная МЭФ346, пригодная для прошивки отверстий в янтаре и других ювелирных и технических изделиях из природного камня, керамики, стекла [10].

Способность ультразвука, наложенного на режущий инструмент, снижать усилия резания нашла широкое применение в ультразвуковой инструментальной хирургии для рассечения мягкой, хрящевой и костной тканей. В зависимости от поставленной задачи ультразвуковые инструменты могут иметь самые различные размеры и форму, однако, в аппаратах для ультразвуковой хирургии не предусмотрена возможность изменения температуры режущего инструмента [11, 12].

Известны ультразвуковые паяльники (прототип) с электрическим нагревом, имеющие преобразователь, сообщающий рабочему стержню паяльника ультразвуковые колебания [13, 14], однако стержни ультразвуковых паяльников не имеют режущих кромок и не могут быть использованы для размерной обработки поверхностей, в том числе и янтаря.

Целью настоящего изобретения является повышение производительности и расширение технологических возможностей процессов удаления окисной корки с янтаря и его переработки.

Поставленная цель достигается тем, что механическое воздействие на окисную корку и янтарь производят металлическим инструментом, предварительно прогретым до температур, не превышающих температуру плавления янтаря, а на рабочую кромку инструмента накладывают ультразвуковые колебания.

Устройство для осуществления предложенного способа удаления окисной корки с янтаря и его обработки включает электрический генератор ультразвуковой частоты, акустический преобразователь, соединенный с электрическим генератором, волновод с инструментом, соединенный с преобразователем, нагревательный элемент и источник питания для нагревательного элемента, отличающееся тем, что нагревательный элемент установлен на волноводе с рабочим инструментом.

Рабочая часть ультразвукового инструмента, используемого для реализации предлагаемого способа, может иметь форму лезвия скальпеля или другую форму в соответствии с требованиями выполняемой операции (Рис. 1). Амплитуда колебаний режущей кромки в зависимости от поставленной задачи может меняться от 1 до 350 мкм, а частота выбирается 22 кГц или 44 кГц (Частоты, разрешенные для использования в технических целях Международным электротехническим комитетом). При частоте 22 кГц амплитуда колебаний рабочей части инструмента может быть выше, чем при частоте 44 кГц, но размеры преобразователей в последнем случае меньше, чем при более низкой частоте.

Чем ниже амплитуда колебаний режущей кромки, тем меньше усиление режущего эффекта, но тем больше ресурс преобразователя и самого инструмента. Поэтому обычно используют преобразователи для получения ультразвука с частотой 22 кГц с амплитудами в интервале 5÷100 мкм.

Поскольку трение покоя больше, чем трение скольжения, то трение между двумя поверхностями уменьшается, если одна из них совершает колебательные движения. Именно поэтому работа с ультразвуковыми инструментами требует меньших усилий. Характер рассечения ультразвуковым инструментом зависит от формы его рабочей части, амплитуды и направления колебаний. Зависит он и от вязкоупругих свойств и однородности рассекаемой среды.

Очевидно, что если на инструмент, имеющий, например, форму стержня, наложены лишь продольные колебания, то с его помощью в янтаре можно создавать отверстия, а его воздействие на стенки канала минимально. Если инструмент, рабочий конец которого, кроме продольных, совершает и поперечные колебания, то с его помощью можно оказывать разрушающее действие на большую поверхность обрабатываемой заготовки.

При ультразвуковом воздействии на объекты сложной структуры на границах раздела между слоями с отличающимися сдвиговыми характеристиками образуются поверхностные сдвиговые волны, быстро затухающие в тонком слое на границе раздела, что обуславливает локальное повышение температуры и возникновение механических усилий, совместно способствующих разделению граничащих сред, например, янтаря и окисленной корки. Этот эффект может быть усилен или ослаблен подбором среды, в которой проводится обработка янтаря, например жидкостной или газовой, или направленным изменением свойств янтаря за счет его набухания в воде, маслах или других жидкостях.

Дополнительное тепло, снижающее вязкость аморфного янтаря, выделяется также за счет трения у кромки лезвия колеблющегося инструмента, однако это тепло успевает распространиться в объем янтаря, что может приводить к его растрескиванию в первый момент соприкосновения с ультразвуковым инструментом.

Для предотвращения этого нежелательного эффекта в предлагаемом способе и устройстве ультразвуковой инструмент снабжен нагревателем, позволяющим предварительно нагреть его до температуры, близкой к температуре размягчения янтаря, после чего включается генератор, сигнал с которого поступает на преобразователь, обеспечивающий колебания рабочей части инструмента с ультразвуковой частотой.

Для реализации способа удаления окисной корки с янтаря и его обработки использовано устройство (Рис. 2), включающее электрический генератор ультразвуковой частоты (1), сигнал с которого подается на акустический преобразователь (2), соединенный волноводом (3) с присоединенным к нему инструментом (4). На волноводе закреплен нагревательный элемент (5), питаемый от регулируемого источника питания (6), что позволяет устанавливать скорость нагревания инструмента и его максимальную температуру.

Изобретение поясняется примерами, которые не носят ограничивающего характера.

Пример 1. Окисную корку природного, необработанного янтаря срезают при комнатной температуре инструментом без подогрева с острой кромкой, на который наложены ультразвуковые колебания с частотой 22 кГц и амплитудой до 5 мкм. Заметных различий в свойствах инструмента удалять окисную корку или рассекать янтарь при изменении амплитуды колебаний рабочей кромки в интервале 0-5 мкм не обнаружено.

Пример 2. Окисную корку природного, необработанного янтаря срезают при комнатной температуре инструментом без подогрева с острой кромкой, на который наложены ультразвуковые колебания с частотой 22 кГц и амплитудой до 50 мкм. Окисная корка легко удаляется с поверхности янтаря, однако эта поверхность оказывается мутной из-за сетки микротрещин, образовавшихся в холодном, хрупком янтаре под действием переменных механических усилий, возникающих при ультразвуковом воздействии.

Пример 3. Окисную корку природного, необработанного янтаря, помещенного в жидкую среду, срезают при комнатной температуре (без подогрева) инструментом с острой кромкой, на который наложены ультразвуковые колебания с частотой 22 кГц и амплитудой 50-100 мкм. Окисная корка легко удаляется с поверхности янтаря, которая остается практически прозрачной, однако, после высыхания на ней можно обнаружить сеть микротрещин.

Пример 4. Окисную корку природного, необработанного янтаря срезают предварительно подогретым до температуры 120-150°C инструментом с острой кромкой, на который наложены ультразвуковые колебания с частотой 22 кГц и амплитудой 50-100 мкм. Причем сначала прикасаются к обрабатываемому изделию горячим инструментом и лишь через 1÷3 секунды включают ультразвук. Окисная корка легко удаляется с поверхности янтаря, которая остается прозрачной после удаления корки ультразвуковым инструментом. Легко обрабатывается и сам янтарь, причем поверхность янтаря после обработки также остается прозрачной.

Пример 5. Окисную корку природного, механически необработанного, выдержанного в воде и набухшего (насыщенного водой) янтаря срезают предварительно подогретым до температуры 120-150°C инструментом с острой кромкой, на который наложены ультразвуковые колебания с частотой 22 кГц и амплитудой 50-100 мкм. Причем сначала прикасаются к обрабатываемому изделию горячим инструментом и лишь через 1÷3 секунды включают ультразвук. Вскипающая за счет высокой температуры и ультразвукового воздействия вода существенно облегчает удаление окисной корки с поверхности янтаря, которая остается прозрачной после обработки ультразвуковым инструментом. Облегчается и ускоряется обработка и самого янтаря.

Из приведенных примеров следует, что в результате использования предложенного изобретения удается быстро и без потерь основного сырья очистить янтарь от окисной корки, а также проводить обработку янтаря с целью получения ювелирных, художественных или технических целей.

Таким образом, совокупность отличительных признаков описываемого изобретения обеспечивает достижение указанного результата. Использование предложенного изобретения позволяет сократить время очистки и обработки янтаря, а также снизить его потери в процессе обработки.

Для заявленного изобретения в том виде, как оно охарактеризовано в изложенной формуле, подтверждена возможность осуществления с помощью описанных в заявке средств и методов. Следовательно, заявленное изобретение соответствуют условию "промышленная применимость".

В результате проведенного анализа уровня техники очистки янтарного сырья и обработки янтаря источник, характеризующийся признаками, тождественными всем существенным признакам заявленного изобретения, не обнаружен, следовательно, заявленное изобретение соответствует условию "новизна".

Дополнительный поиск известных решений показал, что заявленные способ и устройство не вытекают для специалиста явным образом из известного уровня техники, поскольку применение ультразвуковых инструментов с изменяемой температурой позволяет легко обрабатывать янтарь, отделять окисную корку от янтаря по границе раздела, избежать потери исходного сырья. Следовательно, заявленное изобретение соответствует условию "изобретательский уровень".

среда, 14 декабря 2016 г.

Старение янтаря

Янтарь: физические и химические свойства




Янтарь хрупок, легко разбивается от удара или при падении, но вместе с тем пластичен. И это очень ценное его качество, благодаря которому камень хорошо поддается механической обработке. Янтарь можно пилить, резать, сверлить, шлифовать, полировать. Твердость янтаря по шкале Мооса находится в пределах от 2 до 3. Для сравнения: твердость гипса – 2, кварца – 7, алмаза – 10.

Ещё в VII-VI в.в. до н.э. Фалесу Милетскому была известна способность янтаря электризоваться при трении и притягивать разные мелкие и лёгкие предметы. Описывая в начале XVII века природу этого явления, английский учёный В.Джильберт назвал его электризацией, от греческого названия янтаря - электрон.

По мнению китайского учёного Тао Хунчин (452 - 536 гг. н.э.) только тот янтарь является настоящим, который, если его потереть рукой и согреть, притягивает горчичные зёрна.

В первой монографии, посвящённой янтарю, A.Aurifaber указал, что способностью притягивать различные предметы обладает только обработанный янтарь (без окисленной корки), предварительно потёртый о сукно, кожу и т.п. Причём, чем сильнее разогревается при трении янтарь, тем большей силой он обладает, притягивая не только древесные стружки, но также железные, серебряные и золотые опилки.

Янтарь плохо проводит электрический ток, поэтому его раньше использовали для изготовления изоляторов. Однако при трении о шерстяную ткань янтарь электризуется, и продолжительное время сохраняет отрицательные электрические заряды. Свойство притягивать к себе кусочки бумаги, соломинки, волосы присуще всем смолам, но ни одна из них не обладает такой притягательной силой, как янтарь. От янтаря пошло представление об электричестве. В  Древней Греции в обиходе были янтарные прялки и веретёна: электризуясь при трении, они очищали пряжу от различных примесей.

Янтарь использовался даже для янтарной оптики (стекла для очков, лупы), изготовленной впервые в 1691 году знаменитым немецким мастером Христианом Першином (Савкевич С. С.).

Развитие физических методов в XVII - XVIII веках позволило сделать интересные наблюдения. Так F.Hauksbee в 1705 году обнаружил, что янтарь при трении о шерсть даёт яркое свечение в вакууме, причём его интенсивность возрастает при увеличении скорости трения. На воздухе это явление почти не было замечено.

В 1816 году J.F.John одним из первых подробно изучил физико-химические свойства янтаря: степень прозрачности, цвет, морфологию, блеск, излом, твёрдость, хрупкость, способность электризоваться при трении, запах, вкус, цвет порошка, оптические свойства, удельный вес. Автор описал действие на янтарь воздуха, воды, тепла, различных реактивов, спирта, щелочей, кислот, эфира, масел.

В 1902 году  появляется работа В.К.Агафонова, в которой автор рассматривает особенности поглощения ультрафиолетовой области спектра в янтаре. С. С. Савкевич установил, что окисление янтаря происходит более интенсивно при повышенных температурах, на свету и, особенно, в ультрафиолетовых лучах. Автор подробно изучил спектры испускания балтийского янтаря. Регистрировалась люминесценция как плоско-полированной поверхности, так и порошка с размером частиц около 2 мм.

Полученные результаты свидетельствуют  о том, что спектр люминесценции балтийского янтаря характеризуется широкой полосой испускания в области 390 - 610 нм с нечётким максимумом около 510 нм. Таким образом, спектр испускания балтийского янтаря лежит в спектре электромагнитного поля видимого света.

Исследования Г.К.Сергановой с соавторами показали, что при окислении янтаря присоединение кислорода происходит с образованием гидроперекисей и перекисей.

К числу наиболее характерных химических особенностей янтаря относится наличие в продуктах его сухой перегонки янтарной кислоты.

Таким образом, была доказана проницаемость янтаря для жидких и газообразных агентов.

1. До сих пор не известно ни одного растворителя, в котором бы янтарь без разложения полностью растворялся. Янтарь не растворяется в воде. В кипящей воде размягчается (при температуре 100 С). Частично может растворяться в таких органических соединениях как спирт (20-25 % ), эфир (18-23 % ), хлороформ (до 20 % ), бензол (9,8%), скипидар (25%), льняное масло (18%). Но он полностью распадается в горячей концентрированной азотной кислоте. В кипящей воде янтарь размягчается при температуре 100˚ С.
2. Одним из особых свойств является способность янтаря разбухать в воде. За небольшой промежуток времени объём измельчённого янтаря, помещенного в воду, увеличивается на 8%. Способность поглощать определенный объём воды (0,1 - 0,4%) была отмечена также у прозрачного янтаря, не содержащего микроскопических пустот.  Ранее считали, что вода проникает в янтарь по трещинам, однако в 1962 году Kawasaki был доказан факт диффузии воды в янтарь. Чрезвычайно важным является способность янтаря к набуханию в различных веществах при комнатной температуре, т.е., фактически, способность к абсорбции различных органических и неорганических соединений.

3. Термические свойства янтаря обусловлены его аморфным строением. При нагревании янтаря выше определенной температуры, которая обусловлена видом янтаря, наступает процесс его расплавления, сопровождающийся химическими реакциями с образованием простых веществ. При этом наблюдается потеря веса исходного материала от 40 до 30%. Плавлению янтаря предшествует размягчение. Уже при температуре около 50°С на стенках колбы, в которой находится янтарь, конденсируются пары воды, а при 125 - 130°С идёт выделение паров жёлтого цвета с запахом янтаря (ароматических соединений - терпенов и сесквитерпенов). Фактически термическая деструкция янтаря начинается после 100°С. Она сопровождается потерей веса, обусловленной выделением летучих продуктов и газов (СО2,  СО,  Н2,  Н2S,  О2; предельных и непредельных углеводородов, янтарной кислоты и др.).

По данным Э. Фракей, янтарь плавится при температуре 350 - 380°С. При нагревании до 1000° С янтарь почти полностью улетучивается, издавая при этом характерный запах серы и битумов. При нагревании без доступа воздуха до 140-150°С янтарь делается пластичным. Эти его свойства используют для каления и прессования янтаря. При калении замутнённый янтарь становится прозрачным, а в процессе прессования мелкие кусочки янтаря переходят в заготовки любой формы. При сгорании янтарь выделяет пары с ароматным запахом. В связи с этим в средние века его употребляли для благовонных курений в храмах и церквах. Именно благодаря этому свойству в древней Руси янтарь называли "морским ладаном".

4. Янтарь под действием ультрафиолетового облучения люминесцирует. Прозрачный янтарь светится бледно-голубым, облачный, бастард и костяной - молочно-белым со слабым голубоватым оттенком. Интенсивность голубого свечения зависит от степени прозрачности янтаря. Чем прозрачнее янтарь, тем гуще в нем цвета люминесценции. Причинами люминесценции янтаря являются особенности внутреннего строения и наличие различных примесей.

Исследования С.С.Савкевич показали, что янтарь обладает довольно ярко выраженной фотолюминесценцией под действием ультрафиолетового излучения. Кроме того, янтарь обладает триболюминесценцией (люминесценция, возникающая при растирании, раздавливании или раскалывании кристаллических люминофоров; вызывается электрическим разрядами, происходящими между образовавшимися наэлектризованными частями кристаллов — свет разряда вызывает фотолюминесценцию кристаллического люминофора). Она проявляется в виде слабого желтоватого свечения во время растирания янтаря в ступке в хорошо затемнённом помещении.

5. Янтарь плохо проводит электрический ток, однако при трении о шерстяную ткань он электризуется и продолжительное время сохраняет отрицательные электрические заряды, притягивая к себе кусочки бумаги, соломинки, волосы. Это свойство присуще всем смолам, но ни одна из них не обладает такой притягательной силой, как янтарь. От янтаря пошло представление об электричестве. В древней Греции в обиходе были янтарные прялки и веретена; электризуясь при трении, они очищали пряжу от различных примесей. Диэлектрическая постоянная янтаря равна 2,863.

6. При продолжительном пребывании на воздухе поверхность янтаря изменяется. Если разломить или распилить кусок янтаря, то можно увидеть, что поверхность его окрашена более интенсивно, чем центральная часть. На воздухе янтарь окисляется сравнительно быстро, образуя при этом корочку. Толщина самой корочки во многом зависит от места находки образца. У янтаря, извлеченного из земли, корочка толще, она шероховатая и покрыта трещинами. У янтаря, подвергшегося воздействию морских волн, значительно тоньше, иногда едва заметная, светлая, прозрачная, без трещин.

Ещё одним  важным обстоятельством для понимания целебных свойств янтаря является обнаружение при помощи электронного парамагнитного резонанса в тёмно-коричневых янтарях парамагнитных центров. Число парамагнитных центров  в этих разновидностях янтаря в 100 раз больше, чем в светлых янтарях. В выветрелой корке по сравнению с неизмененным янтарём (в одном куске) парамагнитных центров меньше. Зато корка выветривания содержит по сравнению с неизмененным янтарём больше химических элементов, в том числе солей янтарной кислоты.

Почта